1. Java A, Song X D, Finin T, et al. Why we twitter: understanding microblogging usage and communities. Proceedings of the 9th International Workshop on Knowledge Discovery on the Web (WebKDD’07) and 1st International Workshop on Social Networks Analysis (SNA-KDD’07) on Web Mining and Social Network Analysis, Aug 12-15, 2007, San Jose, CA, USA. New York, NY, USA: ACM, 2007: 56-65
2. Bollen J, Pepe A, Mao H. Modeling public mood and emotion: twitter sentiment and socio-economic phenomena. Proceedings of the 19th International World Wide Web Conference (WWW’10), Apr 26-30, 2010, Raleigh, NC, USA. 2010
3. Bollen J, Mao H, Zeng X. Twitter mood predicts the stock market. Journal of Computational Science, 2011, 2(1): 1-8
4. Bollen J, Mao H, Pepe A. Determining the public mood state by analysis of microblogging posts. Proceedings of the 12th International Conference on the Synthesis and Simulation of Living System (ALIFE’10), Aug 19-23, 2010, Odense, Denmark. Cambridge, UK: MIT Press, 2010: 667-668
5. Zhao J, Dong L, Wu J, et al. Moodlens: An emoticon-based sentiment analysis system for Chinese tweets. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’12), Aug 12-16, 2012, Beijing, China. New York, NY, USA: ACM, 2012: 1528-1531
6. Tsagkalidou K, Koutsonikola V A, Vakali A, et al. Emotional aware clustering on micro-blogging sources. Proceedings of the 4th International Conference on Affective Computing and Intelligent Interaction, Oct 9-12, 2011, Memphis, TN, USA. Berlin, Germany: Springer, 2011: 387-396
7. Mitrovi? M, Paltoglou G, Tadi? B. Networks and emotion-driven user communities at popular blogs. The European Physical Journal B, 2010, 77(4): 597-609
8. Das D, Bandyopadhyay S. Emotions on Bengali blog texts: role of holder and topic. Proceedings of the 2011 International Conference on Advances in Social Networks Analysis and Mining (ASONAM’11), Jun 25-27, 2011, Kaohsiung, China. Piscataway, NJ, USA: IEEE, 2011: 587-592
9. Yamashita T, Sato H, Oyama S, et al. Classification of twitter users based on following relations. Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS’13), Mar 13-15, 2013, Hong Kong, China. Hong Kong, China: Newswood Limited, 2013
10. Michelson M, Macskassy S A. Discovering users' topics of interest on twitter: A first look. Proceedings of the 4th Workshop on Analytics for Noisy Unstructured Text Data (AND’10), Oct 26, 2010, Toronto, Canada. New York, NY, USA: ACM, 2010: 73-80
11. Bann E, Bryson J. Measuring cultural relativity of emotional valence and arousal using semantic clustering and twitter. Proceedings of the 35th Annual Meeting of the Cognitive Science Society (COGSCI’13), Jul 31-Aug 3, 2013, Berlin, Germany. 2013: 1809-1814
12. Chatzakou D, Koutsonikola V, Vakali A, et al. Micro-blogging content analysis via emotionally-driven clustering. Proceedings of the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction (ACII’13), Sep 2-5, 2013, Geneva, Switzerland. Piscataway, NJ, USA: IEEE, 2013: 375-380
13. Vakali A, Kafetsios K. Emotion aware clustering analysis as a tool for Web 2.0 communities detection: Implications for curriculum development. Proceedings of the 21st International World Wide Web Conference (WWW’12), Apr 16-20, 2012, Lyon, France. 2012
14. Liu B, Hu M, Cheng J. Opinion observer: Analyzing and comparing opinions on the Web. Proceedings of the 14th International World Wide Web Conference (WWW’05), May 10-14, 2005, Chiba, Japan. 2005: 342-351
15. Liu B. Sentiment analysis and subjectivity. Dale R, Moisl H, Somers H. Handbook of Natural Language Processing. 2nd ed. New York, NY, USA: Marcel Dekker, 2010: 627-666
16. Dodds P S, Harris K D, Kloumann I M, et al. Temporal patterns of happiness and information in a global social network: hedonometrics and twitter. PLoS One, 2011, 6(12): e26752
17. Dodds P S, Danforth C M. Measuring the happiness of large-scale written expression: songs, blogs, and presidents. Journal of Happiness Studies, 2010, 11(4): 441-456
18. Cambria E, Schuller B, Liu B, et al. Knowledge-based approaches to concept-level sentiment analysis. IEEE Intelligent Systems, 2013, 28(2): 12-14
19. Bradley M M, Lang P J. Affective norms for English words (ANEW): Instruction manual and affective ratings. Technical Report C-1. Gainesville, FL, USA: The Center for Research in Psychophysiology, University of Florida, 1999
20. Shen Y, Li S C, Zheng L, et al. Emotion mining research on micro-blog. Proceedings of the 1st IEEE Symposium on Web Society (SWS’09), Jun 21-26, 2009, Madison, WI, USA. Piscataway, NJ, USA: IEEE, 2009: 71-75
21. Yang K, Shahabi C. A PCA-based similarity measure for multivariate time series. Proceedings of the 2nd ACM International Workshop on Multimedia Databases (MMDB’04), Nov 8-13, 2004. Washington, DC, USA. New York, NY, USA: ACM, 2004: 65-74
22. Yang K, Shahabi C. An efficient k nearest neighbor search for multivariate time series. Information and Computation, 2007, 205(1): 65-98
23. Singhal A, Seborg D E. Clustering multivariate time-series data. Journal of Chemometrics, 2005, 19(8): 427-438 |